

iwis ketten Joh. Winklhofer & Söhne GmbH & Co. KG bewegen die welt

Tel: +32 51 200602 • Fax: +32 51 225968 • e-mail: sales@gallon.be

Problem/Initial situation IWIS solution

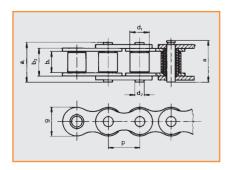
Chains in corrosive media have to possess high fatigue and wear resistance. Chains made of standard steels corrode quickly whilst stainless steels made of V2-A steel do not withstand these stresses. Nickel-plated or galvanised chains only offer limited corrosion-proofing because the coating is destroyed by abrasion.

IWIS high performance chains made of hardened high-alloy steels with good corrosion resistance and significantly higher strength than stainless steel chains.

Highlights

- Very high wear-resistance comparable with IWIS standard chains
- Very good and long-lasting corrosion resistance - in comparison with surface-coated chains
- Significantly higher fatigue resistance and breaking strength figures than stainless steel chains - smaller dimensions possible

Technical features


	IWIS CR	IWIS Standard	Stainless Chain		
All components	hardened	hardened	not hardened		
pre-stretched	yes	yes	not normal		
Fatigue strength	85 %	100 %	50 %		
Wear resistance	95 %*	100 %	30 %		
Resistance to chemicals	good*	low, good when surface-plated	very good		

* Resistance to chemicals and wear-resistance of the IWIS CR chains can be improved via effective lubrication

Outside width Diameter Breaking strength FB strength F										
L 85 CR	08 B-1	1/2 X 5/16"	16,9	18,5	8,51	4,45	12,2	16.000	0,50	0,70
M 106 CR	10 B-1	5/ ₈ X ³ / ₈ "	19,5	20,9	10,16	5,08	14,4	18.000	0,67	0,95
M 127 CR	12 B-1	³ / ₄ X ⁷ / ₁₆ "	22,7	23,6	12,07	5,72	16,4	22.000	0,89	1,25

Industrial uses/ Areas of application

- In food product processing
- In drinks manufacture
- In packaging machines
- In cheese and dairy technology
- In areas where there are moist or aggressive conditions
- In cleaning systems
- In (chemical) equipment construction
 - ... and everywhere where chains have to remain articulated despite difficult conditions as a consequence of corrosion and may not rust on hygienic or visual grounds.

Chain wheels

Depending on the circumstances, chain wheels can be used which are made of

- stainless material
- suitable plastics
- or steel, possibly with an electro-plated coating

Rust- and acid-resistance of CR chains

Dependent on

- duration
- concentration
- temperature
- variations of the mixture of the individual media. We recommend field trials to check fitness for the operational purpose.